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Abstract

When it comes to fitting simple allometric slopes through measurement

data, evolutionary biologists have been torn between regression methods.

On the one hand, there is the ordinary least squares (OLS) regression,

which is commonly used across many disciplines of biology to fit lines

through data, but which has a reputation for underestimating slopes when

measurement error is present. On the other hand, there is the reduced

major axis (RMA) regression, which is often recommended as a substitute

for OLS regression in studies of allometry, but which has several weaknesses

of its own. Here, we review statistical theory as it applies to evolutionary

biology and studies of allometry. We point out that the concerns that arise

from measurement error for OLS regression are small and straightforward to

deal with, whereas RMA has several key properties that make it unfit for

use in the field of allometry. The recommended approach for researchers

interested in allometry is to use OLS regression on measurements taken

with low (but realistically achievable) measurement error. If measurement

error is unavoidable and relatively large, it is preferable to correct for slope

attenuation rather than to turn to RMA regression, or to take the expected

amount of attenuation into account when interpreting the data.

Introduction

Biologists must often decide how best to fit a line

through data. Line-fitting methods are used in many

biological disciplines, and are particularly important

for fields like the study of allometry, in which the

slopes of fitted lines are themselves data of interest. In

the study of allometry, slopes are used to describe

how a trait (often a morphological structure) scales

with overall body size (Huxley, 1932). Researchers

take measurements of trait size and body size across a

sample of individuals, and then analyse scaling rela-

tionships on log–log scatter plots with body size on

the x-axis and trait size on the y-axis. The slope (b) of

the line fit through the points describes the allometric

scaling of the structure. Structures may scale in direct

proportion to body size (‘isometry’), indicated by

b = 1, or they may scale more steeply (‘positive allom-

etry’, b > 1) or more shallowly (‘negative allometry’,

b < 1). Allometric slopes are of interest for evolution-

ary biologists, because they are key for addressing

hypotheses about the action of natural selection, sex-

ual selection, and of factors such as size constraints

and condition dependence (Eberhard et al., 1998,

2009; Bonduriansky & Day, 2003; Egset et al., 2012;

Emlen et al., 2012; Fromhage & Kokko, 2014;

Rodr�ıguez et al., 2015).

Defining allometric relationships as the slope of the

line fit through size measurement data sounds simple,

but it is complicated by the availability of several differ-

ent line-fitting techniques that make different assump-

tions and return different slopes for the same data set.

This has generated considerable discussion in the evolu-

tionary literature, with no apparent consensus regard-

ing which method is best suited for allometric studies

(Madansky, 1959; Kuhry & Marcus, 1977; McArdle,

1988; Eberhard et al., 1999; Green, 1999; Smith, 2009).
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Here, we point out that this uncertainty arises from a

misapprehension by biologists about established statisti-

cal theory, which states that there is a simple line-fit-

ting method that is best suited for research on

allometry.

Why there is confusion about methods
for allometry: the problem of
measurement error

The discussion of which regression method to use lar-

gely revolves around how to deal with the problem of

measurement error. Measurement error is imprecision

in how measurements are taken, and it results in data

that do not perfectly reflect the true size of the mea-

sured structures. It can come from using imprecise

equipment or from inexperience in the person taking

the measurements (e.g. lack of skill in aligning and

focusing on measurement landmarks). Thus, the values

used to calculate slopes are not the true sizes of the

structures, but rather the true size plus or minus a little

bit, which comes from classical measurement error (e).
We can model measurement error as following a nor-

mal distribution with a mean of zero and a standard

deviation that varies based on the precision of the mea-

surements taken. The variables that are plugged into

the slope formulae are not the true values, x and y, but

rather the observed values, each with their own mea-

surement error: X and Y, where X = x + ex and

Y = y + ey, with ex assumed independent of x and ey
independent of y (Warton et al., 2006). When measure-

ment error is present in a variable, that variable’s vari-

ance differs from what it would have been without any

measurement error – that is var(X) > var(x), and

var(Y) > var(y).

The two most commonly used line-fitting methods in

studies of allometry make different assumptions about

measurement error, and their slope estimates are influ-

enced by measurement error in different ways (McAr-

dle, 1988; Smith, 2009; Sokal & Rohlf, 2012). These

methods are ordinary least squares (OLS) regression

and reduced major axis (RMA) regression (also known

as the standard major axis) (McArdle, 1988; Bondurian-

sky, 2007; Smith, 2009).

Ordinary least squares regression fits a line to bivari-

ate data such that the (squared) vertical distance from

each data point to the line is minimized across all data

points (Fig. 1a) (Sokal & Rohlf, 2012). The slope of this

line is described by the equation bOLS = cov(x,y)/var(x)

(Sokal & Rohlf, 2012). Therefore, OLS slopes change if

there is either a change in how x and y covary or a

change in the variance of the x-axis variable.

Because OLS regression fits a line using vertical resid-

uals, it assumes that the values on the horizontal axis

were measured perfectly and that any deviations of data

points from the regression line are due to the variable

plotted on the vertical axis (Sokal & Rohlf, 2012). There

are many types of studies in which the predictor vari-

able is measured with absolute accuracy, but in allome-

try, the x-axis variable is a series of measurements that

are naturally susceptible to some amount of error, and

so this assumption of OLS regression is not met.

When measurement error (e) is present, the formula

for the OLS slope becomes: b’OLS = cov([x + ex], [y +

ey])/var(x + ex) = cov(X, Y)/var(X), where b’ denotes a

slope calculated with measurement error. The expected

effect of measurement error in the numerator is neutral

on average; measurement error does not consistently

bias covariance in one direction or another. By contrast,

measurement error will increase the denominator, var

(X), leading to smaller estimates of OLS slope (Carroll

et al., 2006; Fuller, 2006; Sokal & Rohlf, 2012). In other

words, the observed slope, b’OLS, is usually lower than

the slope without measurement error, bOLS. If the differ-

ence between these two is large, then researchers can
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Fig. 1 Fitting a line to bivariate data using ordinary least squares

(OLS) regression (a) and reduced major axis (RMA) regression (b).

Both panels display the same hypothetical data set with different

regression slopes (solid lines) fit through the data. Both OLS and

RMA regressions fit slopes by minimizing the sum of the residuals

(dashed lines), but they differ in their treatment of residuals. OLS

regression (a) uses vertical residuals, whereas RMA regression

(b) uses diagonal residuals that have slopes opposite to the slope of

the regression line. RMA residuals can be thought of as

hypotenuses of right triangles formed between each data point and

the regression line such that the two shorter sides of the triangles

are parallel to the axes and are proportional in length to the

standard deviation of the variables plotted on their respective axes

(as shown with dotted lines). The values shown here were

generated in R version 3.1.3 (R Core Team, 2015). The x-axis

values were sampled randomly from a specified range, and the

y-axis values were generated by multiplying x-values by a specified

slope and adding some scatter (representing natural variation

among individuals). The scatter was randomly sampled for each

point from a normal distribution with a mean of 0 and a standard

deviation that was approximately 90% of the standard deviation of

the y-axis variable.
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run into trouble if they see b’OLS and assume that it

equals bOLS – doing so would lead them to believe that a

particular scaling relationship is shallower than it truly

is. The attenuating effect of measurement error on OLS

slopes is widely discussed in the evolutionary literature

(McArdle, 1988; Warton et al., 2006; Bonduriansky,

2007; Smith, 2009). Because of it, some authors recom-

mend that OLS regression be avoided altogether in stud-

ies of allometry (Ricker, 1973; Green, 1999) or that it be

used only under a restricted range of conditions (McAr-

dle, 1988; Bonduriansky, 2007; Forstmeier, 2011; Legen-

dre & Legendre, 2012).

Reduced major axis regression also minimizes collec-

tive distance between data points and the line, but

rather than being vertical, these distances are diagonal

(Warton et al., 2006); they can be thought of as hypote-

nuses of right triangles that have two sides parallel to

the axes, each side being proportional in length to the

standard deviation of the variable plotted on that axis

(Fig. 1b). RMA slopes are calculated as bRMA = sd(y)/sd

(x), and they can be positive or negative depending on

the sign of the correlation (Sokal & Rohlf, 2012).

Therefore, RMA slopes change if the variance of x or y

changes.

To avoid OLS attenuation, some researchers prefer

RMA regression, because it allows for measurement

error in both axes (Green, 1999; Laws, 2003). Specifi-

cally, it assumes that each variable has error propor-

tional to its standard deviation (McArdle, 1988). In the

presence of measurement error, the formula for RMA

slopes becomes: b’RMA = sd(y + ey)/sd(x + ex) = sd(Y)/sd

(X). Thus, when measurement error affects each axis

proportionately, an RMA slope with measurement error

will be very close to what it would have been without

measurement error (i.e. b’RMA � bRMA). This is why

some authors believe that RMA slopes are more robust

to measurement error than OLS slopes.

Studies on allometry vary considerably in their

choice of method. For instance, we surveyed three

journals that often feature allometric studies (Biological

Journal of the Linnean Society, Evolution, and Journal of

Evolutionary Biology) for the years 2010–2015. We

searched for ‘allometry’ on Web of Science targeting these

journals. We found 33 papers that dealt with static

allometry. Of these, 42% used RMA regression either

exclusively (30%) or together with OLS regression

(12%), and 58% used OLS regression exclusively. If

one of these methods is well suited for allometric

research and the other is not (and the estimated slopes

are different), this represents a problem for the field.

Why measurement error need not be a
big problem for OLS slopes

Although measurement error in the x-axis attenuates

OLS slopes, to conclude that OLS slopes are always

unreliable descriptors of allometric relationships (as

some evolutionary biologists do) is to ignore an impor-

tant piece of statistical theory: the degree of OLS slope

attenuation is a function of the magnitude of measure-

ment error in X (McArdle, 2003; Carroll et al., 2006;

Fuller, 2006; Smith, 2009; Egset et al., 2012); that is, as

measurement error in X increases, attenuation gets

worse, and OLS slopes are more strongly biased towards

zero. Conversely, when measurement error in X is close

to zero, slope attenuation is close to zero, and b’OLS is

close to bOLS.

The relationship between measurement error and

slope attenuation can be deduced from the formula for

OLS slope that includes measurement error. The cause

of OLS attenuation is the inflation of the denominator

in the equation for b’OLS, var(x + ex). If we note that

var(x + ex) = var(x) + var(ex), then we can see that

when var(ex) is large relative to var(x), the denominator

is substantially larger, and b’OLS is strongly biased

towards zero. When, on the other hand, var(ex) is small

compared to var(x), then var(X) is close to var(x), and

an OLS slope calculated with measurement error in x

will be close to what it would have been without mea-

surement error (i.e. b’OLS � bOLS). This means that OLS

slopes can serve as useful indicators of scaling patterns

even in the presence of measurement error, as long as

that error is relatively small (Fig. 2). The effect of mea-

surement error on an OLS slope can be summarized in

terms of an attenuation factor (k), as follows: k = var

(x)/[var(x) + var(ex)], and b’OLS = k * bOLS (Carroll

et al., 2006). Note again that the smaller that var(ex) is,

the closer b’OLS will be to bOLS.

Knowing that OLS slopes are robust to small levels of

measurement error is helpful only if those levels are

reasonably achievable in the real world. Theoretical

studies often use dramatic levels of measurement error

to illustrate the attenuation point (e.g. as we do in

Fig. 2a). To get a sense for the levels of measurement

error that are typical of empirical studies, we searched

for ‘static allometry’ and ‘measurement error’ on Web

of Science. We found five papers on allometry that

report measurement error (Table 1). When looking at

the relative magnitude of measurement error variance

as a proportion of total variance in X – i.e. var(ex)/var
(X) – we found that very few traits exceeded 0.1, and

the majority of them were below 0.05. This means that

for most traits in these studies, measurement error

accounted for < 5% of the total variance. At 5% mea-

surement error, we can expect OLS slopes to be attenu-

ated by about 5%, so a structure that scales

isometrically (b = 1) would be described by a slope of

b’ � 0.95 (see Fig. 2b). Although, strictly speaking, the

slope is attenuated, the bias is small enough that it is

not likely to cause confusion in analysis, whether the

goal is (i) assigning slopes to broad categories (e.g.

isometry, negative allometry, positive allometry); (ii)

statistically testing whether slopes are different from

reference values (e.g. 1 or 0); or (iii) testing whether
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the slopes of two traits are different from each other. If,

on the other hand, the purpose is precise slope estima-

tion, it is possible to use the attenuation factor to cor-

rect for slope attenuation.

We recognize that the above is a small sample of

studies and that there may be under-reporting in stud-

ies with larger relative errors. However, our sample

does indicate that low relative errors that present no

serious problem for OLS slope estimation are realisti-

cally achievable in empirical studies.

Checking for measurement error (especially in the

x-axis measure of body size) is straightforward. This can

be done by taking multiple measurements of each indi-

vidual and calculating measurement repeatability, which

is the proportion of total variance explained by individ-

ual identity (bound between 0 and 1). Measurement

error can then be calculated as: measurement error = 1 –
measurement repeatability, or the proportion of residual

variance. Once measurement error in X is known, it

becomes clear whether the OLS slope estimate is

strongly attenuated or not. When measurement error

is relatively large and unavoidable, there are methods

available to correct for it (e.g. Kuhry & Marcus, 1977;

McArdle, 1988; Carroll & Ruppert, 1996; Carroll et al.,

2006). We would, however, recommend improving

the technique or the instrumentation whenever possi-

ble; otherwise, the measurements themselves cease

being good descriptors of structure size, and when the

error in slope estimation is very large, correction

methods cease to be effective (Hansen & Bartoszek,

2012). A complementary approach may be to take the

expected magnitude of attenuation into account when

interpreting the results. This may be particularly useful

when using complex statistical models built on OLS

regression.

It is important to point out that calculating mea-

surement error requires taking at least twice as many

measurements as are needed for slope estimation. This

may make error estimation prohibitive in terms of

time and costs for large data sets. In some situations,

it may be more practical for the researcher to first

hone their measurement technique by running

through practice rounds, taking multiple measure-

ments per individual and calculating measurement

error. Once measurement error is sufficiently low in

the training rounds, the researcher can move on to

collecting the full data set, measuring each structure

only once per individual.

Fig. 2 Effect of measurement error in X on slope estimation by ordinary least squares (OLS) regression. We show the estimated slope (b’)

(given a true slope of b = 1) as a function of the relative magnitude of the error variance and total variance in X – i.e. var(ex)/var(X) (see
text). Attenuation of b’ calculated as b’ = b * 1/[1 + var(ex)/var(X)]. With this formulation, if var(ex) = 0 then b’ = b = 1. This is equivalent

to the formulation of var(x)/[var(x) + var(ex)] in the text but makes the x-axis for this figure more straightforward. (a) As the relative

magnitude of measurement error increases, b’ is attenuated. Note, however, that attenuation is severe only when measurement error is

very large. (b) This panel shows the area highlighted in the dashed rectangle in (a). Here, attenuation of b’ is roughly in a one-to-one

relationship with the relative magnitude of measurement error, and quite minor when measurement error is within reasonably achievable

levels (dashed rectangle; see text).

Table 1 Empirical measurement error values reported in papers

on allometry. Values are categorized as x-axis or y-axis traits,

depending on how they were used in the study (x-axis for body

size indicators, y-axis for traits of allometric interest).

Measurement error is calculated as 1 – repeatability, which is

equivalent to var(ex)/var(X). We show the mean relative size of

measurement error among traits in the data set � SD, followed by

the number of traits.

Source x-axis traits y-axis traits

Al-Wathiqui & Rodr�ıguez

(2011)

0.0002 (1) 0.011 � 0.008 (7)

Nava-Bola~nos et al.

(2012) (first data set)

0.020 � 0.010 (8) 0.018 � 0.015 (12)

Nava-Bola~nos et al.

(2012) (second data set)

0.039 � 0.022 (8) 0.056 � 0.028 (8)

Egset et al. (2012) 0.01 (1) 0.11 (1)

Nava-Bola~nos et al. (2014) 0.042 � 0.031 (6) 0.052 � 0.016 (12)

Kilmer & Rodr�ıguez (2015) 0.049 � 0.078 (7) 0.050 � 0.057 (19)
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Why RMA regression does not fix the
problem of measurement error

Besides the above argument for why OLS regression is

adequate for allometric studies, there are several rea-

sons why RMA regression is not a useful alternative. As

we have seen, RMA regression does not take the

covariance between traits into account for estimating

the slope, so it does not describe functional scaling rela-

tionships. Some authors recommend RMA regression in

cases in which there is ‘codependency’ between the

traits involved – that is when x and y are exchangeable

(e.g. Smith, 2009; Forstmeier, 2011; Legendre & Legen-

dre, 2012). This will rarely be the case in studies of

allometry, where the goal is to determine how traits

scale relative to body size – it makes more sense to say

that a beetle’s horn is large for its body than to say that

its body is small for its horn. With body size plotted on

the x-axis and trait size plotted on the y-axis, variation

in trait size relative to body size is best described as ver-

tical deviations from the underlying scaling function.

These vertical deviations are precisely what OLS regres-

sion models using vertical (rather than horizontal or

diagonal) residuals (Fig. 1).

An additional concern is that RMA regression

requires that data scatter be low and come only from

measurement error that was proportional in both axes.

For empirical measurement data, this is often not the

case. In fact for many studies, measurement error may

contribute only a small proportion of the scatter in a

data set (e.g. Table 1). The rest comes from natural

variation – that is, differences among individuals in pre-

cisely how big a structure is relative to body size. Indi-

viduals of the same body size are likely to have

different sizes of a given trait, due to differences in

environmental or genetic inputs. Consequently, even

with no measurement error, an allometric data set will

have some scatter from natural variation, meaning that

the correlation (r) between trait size and body size will

be less than perfect (i.e. |r| < 1). If we note that

bRMA = bOLS/|r| (Sokal & Rohlf, 2012), then it follows

that for empirical measurement data sets, bRMA can

nearly always be expected to be higher than bOLS. Some

authors have interpreted such differences in slope to be

the dreaded OLS attenuation (e.g. Hayes & Shonkwiler,

2001), but OLS attenuation, as we have seen, only

comes from measurement error in the x-axis variable.

Without measurement error, OLS slopes would be per-

fectly reliable but still shallower than RMA slopes.

Therefore, these differences in slope do not reflect a

weakness of OLS regression, but rather the tendency of

RMA slopes to confound steepness of a relationship

with dispersion of data. Studies that use RMA regres-

sion to fit slopes to data with moderate-to-high natural

variation run the risk of concluding that relationships

are steeper than the true underlying scaling pattern

(Hansen & Bartoszek, 2012; P�elabon et al., 2014). For

example, negative allometry could be mistaken for

isometry or even positive allometry.

It is also important to note that RMA regression, too,

can misestimate slopes when its assumptions about

measurement error are not met. Given that b’RMA = sd

(y + ey)/sd(x + ex) = sd(Y)/sd(X), we can see that b’RMA

will only be a good estimate of bRMA when the effects

of measurement error are proportional between the

two variables (McArdle, 1988; Smith, 2009). If the

y-axis variable were measured with proportionately

more error than the x-axis variable, then sd(Y) would

tend to increase relative to sd(X), and bRMA would be

overestimated (Fig. 3). Conversely, if X were measured
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Fig. 3 Effects of measurement error on reduced major axis (RMA)

slope estimation for different combinations of measurement error

in X and Y. Data are the result of simulations that we ran in R

(version 3.1.3; R Core Team, 2015). The simulations generated

random bivariate allometric data sets and added measurement

error to the variables. The exact amount of measurement error

was obtained by making repeated measurements and calculating

the proportion of total variance that was attributed to error, that is

var(ex)/var(X) (see text). The simulations then calculated ordinary

least squares and RMA slopes for the data without measurement

error (b) and the data with measurement error (b’), and then

calculated proportional slope error as (b’ – b)/b. Negative values of

slope error represent underestimation (or attenuation), and

positive values represent overestimation of slope. Dashed line

indicates where slope error equals 0. Solid lines show the overall

relationship between slope error and measurement error from a

series of simulations (individual data points not shown). These

lines differ in their levels of Y measurement error, as indicated by

the values on the right. Because RMA slopes are calculated as sd

(y)/sd(x), RMA slopes are estimated with the least error when

measurement error in X equals measurement error in Y. When

measurement error in Y is greater than error in X, RMA slopes

tend to be overestimated (positive slope error values), and when X

measurement error is greater, RMA slopes tend to be

underestimated (negative slope error values).
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with proportionately more error than Y, then RMA

slopes would be biased towards zero (Fig. 3) – ironi-

cally, this is the exact problem that researchers try to

avoid using RMA regression in the first place. Thus, the

use of RMA slopes does not relieve the concerns that

arise from measurement error.

Another way of viewing the problem is to note that

any change in the variance of either x or y will change

the estimated RMA slope, regardless of whether this

arises from a change in the steepness of the relationship

or from a change in the scatter of the data (Al-Wathiqui

& Rodr�ıguez, 2011; Egset et al., 2012; Hansen & Bar-

toszek, 2012; Voje & Hansen, 2012) (Fig. 4). OLS slopes,

on the other hand, distinguish between the steepness of

the relationship and the scatter of the data because OLS

regression takes the covariance between the two vari-

ables into account (Eberhard et al., 1998) (Fig. 4).

The one advantage of using RMA slopes is that as

long as measurement error affects both variables pro-

portionately, then b’RMA will be close to bRMA even

when the overall magnitude of measurement error is

high. But this does not solve the larger problem of

RMA slopes overestimating relationships in the pres-

ence of natural variation.

On the (un)importance of the relative
magnitude of measurement error in X
and Y

Some authors recommend that the decision to use one

regression method over the other be based on the rela-

tive magnitude of measurement error in X and Y. One

commonly recommended rule of thumb is that the OLS

method should only be used when error in Y is more

than three times larger than the error in X, and that

otherwise RMA should be used (McArdle, 1988; Bon-

duriansky, 2007; Legendre & Legendre, 2012). An alter-

native recommendation is to use the OLS method

when the sampling variance (natural vertical deviations

from the regression line) plus the measurement error

variance in Y together is more than three times larger

than the measurement error variance in X (McArdle,

1988; Smith, 2009). Note that the latter better fits the

formulation of McArdle (1988) and that it will almost

always favour OLS regression (unless measurement

error in X is very large).

There are problems with recommendations that focus

on relative error magnitudes in X and Y. First, they

imply that OLS and RMA slopes are interchangeable –

Fig. 4 How slopes estimated by

ordinary least squares (OLS) and RMA

regression are influenced by the

steepness of the y ~ x relationship and

dispersion of the data. (a) OLS slope

(solid line) and RMA slope (dashed

line) fit through sample data with

moderate slope and scatter. (b) OLS and

RMA slopes fit through data with a

steeper y ~ x relationship, but with the

same degree of scatter as (a). (c) OLS

and RMA slopes fit through data with

the same y ~ x relationship as (a), but

with greater scatter. In both (b) and (c),

the RMA slope is steeper than in (a),

because RMA slopes are calculated as sd

(y)/sd(x), and the standard deviation of

the y-values has increased in both of

these cases. Thus, RMA slopes may

confound scatter in a data set with the

steepness of the relationship between

two variables. By comparison, OLS

slopes are sensitive to changes in the

steepness of relationships (b), but not to

changes in scatter (c), making them

better suited for describing bivariate

relationships.
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that one should be used in one case, and the other

should be used in another case for the same purpose.

This is incorrect because, as explained above, the two

methods describe different aspects of a data set, and

cannot be compared to one another. Whereas one

method describes a relationship between two variables,

taking covariance into account, the other method sim-

ply describes the relative variance of the two variables.

The second problem is a focus on the wrong factor.

The recommendation comes from simulations that

looked at slope error as a function of the ratio of nat-

ural variation plus measurement error in Y and mea-

surement error in X (McArdle, 1988). OLS slopes had

lower slope error than RMA slopes only when the

above variation in Y was over three times greater than

in X. This is correct, but it overcomplicates the issue.

As we have seen, the sole cause of OLS attenuation is

measurement error in X. Measurement error in Y may

increase the range of potential slopes that OLS calcu-

lates by altering the covariance, but it will not consis-

tently bias slopes in a particular direction (compare

panels a and b in Fig. 5). If X has 5% measurement

error, then on average, OLS slopes will be attenuated

by approximately 5%, regardless of whether measure-

ment error in Y is 1%, 5% or 15%. This contrasts

with the behaviour of RMA regression, where propor-

tionately more error in Y overestimates the slope and

proportionately more error in X attenuates the slope

(Figs 3 and 5c,d).

Third, although the effect of e in the numerator is

neutral on average for OLS slopes, meaning that it

introduces no net bias, it adds noise to the slope esti-

mate (Fig. 5b). This highlights the advantage of keeping

measurement error low across the board.

O
LS

 s
lo

pe
 e

rr
or

0.0 0.1 0.2 0.3 0.4 0.5

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6 (a) (c)

(b) (d)

x measurement error

O
LS

 s
lo

pe
 e

rr
or

0.0 0.1 0.2 0.3 0.4 0.5

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

y measurement error

R
M

A 
sl

op
e 

er
ro

r

0.0 0.1 0.2 0.3 0.4 0.5

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

x measurement error

R
M

A 
sl

op
e 

er
ro

r

0.0 0.1 0.2 0.3 0.4 0.5

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

y measurement error

Fig. 5 Effects of measurement error on ordinary least squares (OLS) (a–b) and RMA (c–d) slope estimation. Each grey point is the result of

a single simulation that we ran in R version 3.1.3 (R Core Team, 2015), following the framework of Fig. 3. Measurement error expressed

as a proportion of total variance, as var(ex)/var(X). Slope error calculated as (b’ – b)/b, where b is the slope of a line fit through data

without measurement error, and b’ is the slope of a line fit through the same data with measurement error. Negative values of slope error

represent underestimation (or attenuation), and positive values represent overestimation of slope. Dashed lines indicate where slope error

equals 0. (a) Error in Y remains at 0, whereas error in X varies from 0 to 0.5. As measurement error in X increases, OLS slopes are

increasingly biased downwards. In other words, attenuation increases in nearly direct proportion with X measurement error (and see

Fig. 2). (b) Error in X remains at 0, whereas error in Y varies from 0 to 0.5. As measurement error in Y increases, the range of OLS slope

error increases, but there is no net bias in either direction, as shown by the regression line. (c–d) Same as a–b, except for RMA slopes. As

X-error increases relative to Y-error, RMA slopes are underestimated (c), and as Y-error increases relative to X-error, they are

overestimated.
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Line-fitting for different types of
allometry

Our comments are broadly applicable to studies of static

and developmental allometry, in which each data point

is a single precise measure from one individual, and the

data set is composed of measurements from a sample of

adults (static allometry) or individuals spanning a range

of ages (developmental allometry) from a single species.

An additional problem arises in studies of evolutionary

allometry, which looks at scaling relationships across

different species, with each data point representing the

species mean for body size and structure size. As

means, these data points naturally contain uncertainty

in the form of standard error – the sample mean may

differ from the population mean. This discrepancy

between observed values and true values is analogous

to the measurement error in static or developmental

allometry. In these cases, if the standard errors are not

small relative the total variance across the data points,

it may be necessary to correct for bias in the slope esti-

mates (Hansen & Bartoszek, 2012) (but recall that

when error is large, correction becomes ineffective;

Hansen & Bartoszek, 2012). A complementary approach

may be to conduct a comparative study of within-spe-

cies scaling (e.g. Emlen et al., 2007). One advantage of

this approach is that it yields a more detailed view of

the evolution of static allometry across species (for

example, a line fit across species means may show

isometry, but patterns within species may range from

negative allometry to positive allometry).

Conclusion

Evolutionary biologists should note that statistical the-

ory recommends the use of OLS regression over RMA

regression for studies of allometry. This is because: (i)

the problem of slope attenuation by OLS regression

can realistically be mitigated by ensuring that mea-

surement error is low, or by correcting for it; and (ii)

OLS regression actually describes allometric scaling,

whereas RMA regression does so only in a narrow

range of conditions. When it comes to describing allo-

metric relationships, RMA regression is the wrong fix

to a small problem.
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